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STATISTICAL CONCEPTS AND TECHNIQUES
IN POPULATION ESTIMATION USING THE PETERSEN METHODE/

BURWELL GOOCHZ/

ABSTRACT

Statistical concepts that are meaningful to mark-recapture
population estimation studies are defined and discussed. The
relevance of probability sampling is explored. It is proposed
that establishment of uniform ratios of marked to unmarked fish
throughout the population eliminates the requirements of prob-
ability sampling. Two unusual characteristics of the estimator
of population size involving bias and variance are investigated,
and a means of circumventing their consequences suggested. Sta-
tistical tests are described for testing two different hypotheses
involving association of marked and unmarked fish. A method of

estimating loss of marked fish due to migration is presented.

[Lxamples illustrating the concepts and techniques are provided.

Many fisheries biologists are inadequately prepared for certain basic tasks
required of them in the practical world of resource management. A typical example
involves the practice of population estimation by use of the Petersen method of
mark and recapture. In Montana this is one of the most important tasks in which
biologists are currently engaged. Unfortunately, few of the statistical concepts

relevant to this practice, including such elementary and ubiquitous notions as
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accuracy, precision, and bias, are adequately understood. Part of the reason for
this situation is that, in contrast to the spate of papers devoted to mathematical
development of mark-recapture methods, which for the most part are of no practical
value to the average biologist, very little is available that bridges the philosophic
gap between elementary statistical concepts and some of the fundamental but cryptic
characteristics and assumptions underlying these methods.

The notes that follow were developed in an attempt to at least partially fill
this void. Thus, the primary concern of this paper is to supplement, rather than
paraphrase, the existing literature. Obviously, some of the information that appears
here did not originate with the author. To the author's knowledge, however, most
of the material, including the synthesis as a whole, has not appeared in print
elsewhere.

Preparation on the part of the reader is assumed to consist of one or two
courses in statistics and familiarity with the basic notion and techniques of the

Petersen method.

DEFINITION OF TERMS

Writing a paper of this nature is much like building a house. It must begin
by laying a solid foundation that serves to support the main body of the structure.
In this case, the foundation consists of statistical concepts that are basic to the
rest of the paper. If the reader does not fully understand the meaning of these
concepts, then he can expect to gain only a superficial appreciation of the main
results presented later on. Although most of the terms defined here should be
familiar to readers, at least by name, explicit and precise definitions of some

are difficult to find in elementary statistical texts.



LSTIMATOR: Mathematical formula used for calculating an estimate of some population

attribute.

Example : N = (M+1)(C+1)/(R+1) - 1

ESTIMATE: A number calcluated on the basis of sample data substituted in an estimator.
Example: 510 = (1u45+1)(195+1)/(55+1) - 1

SAMPLING VARIABILITY (sampling error): Variability among sample estimates arising
from variability among the population units (or individuals), different
combinations of which are included in different samples.

EXPECTATION OF ESTIMATE: The average value of all possible sample estimates that

can be generated in a given sampling situation. That is,

E(N) = INP(N)
where § = estimate of population attribute N
E(ﬁ) = expectation (expected value) of N
P(ﬁ) = probability of occurrence of N
I = summation over all possible values of ﬁ.

BIAS: Difference between the expected value of an estimate and the value of the
population attribute being estimated. That is,

B = E(N) = N

where B = bias in N.
Although B may be positive, negative, or zero, it normally is
thought of as being constant in any given sampling situation.
It also usually arises from a variety of sources, only some of
which may be identifiable, but each of which acts in its own
way to either inflate or deflate an estimate. If B is zero,

N is sald to be an unbiased estimate of N.



PRECISION:
ACCURACY :

VARIANCE OF

MEAN SQUARE

PROBABILITY

A measure of the variability of sample estimates in terms of their

deviations from expectation.

A measure of the variability of sample estimates in terms of theirp

deviations from the population attribute being estimated.

ESTIMATE: A common measure of precision. It is the expected value

of the squared deviations of estimates from their expectation. That is,
V(N) = E(V - E(§))2,

ERROR: A common measure of accuracy. It is the expected value of the

squared deviations of estimates from the population attribute being

estimated. That is,

MSE(N) = E(N - )2,

SAMPLING: The foundation of statistical sampling theory. In the
context of any given sampling situation, probability sampling implies
the following conditions:
(1) All possible unique samples can be defined (at least
conceptually) in terms of the population units included
in each; that is, each individual in the population is
uniquely identifiable in some way (e.g., by name, number ,
mark, etc), and the composition of each possible sample
can be predetermined by listing all included individuals.
(2) The probability of selection of any given sample is
known.
(3) The estimation procedure provides a single estimate for
each sample.
Conditions (1) and (2) imply the existence of some method of selecting
population units such that mathematical deduction of sample composition

and probability of selection is permitted.
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The significance of the three conditions listed is that they permit us
to generate the probability distribution associated with the set of
all possible estimates, from which flows the derivation of all character-
istics of these estimates.

SIMPLE RANDOM SAMPLING WITHOUT REPLACEMENT (random sampling): A method of probability
sampling with the following defining features:
(1) Sample size (n) is determined before sample selection

begins.

(2) The sample is selected one unit at a time without
replacing selected units.
(3) On the ith draw (i = 1, ..., n), each unit remaining
in the population has the same probability of selection.
In terms of the conditions required for probability sampling, these
three properties are equivalent to saying that:

(1) The total number of different samples is

(N _ N!
n/ - (N-n)'n!

(2) Considering all samples together, each population unit
appears the same number of times, viz.,(ﬁIi) , and
occurs with every other unit in the population the
same number of times, viz., <§:§).

(3) Each of the (g) different samples has the same prob-

ability of selection, viz., l/(g) .

We will now investigate some important relationships among the foregoing concepts.
One objective in doing this is to dispel two rather widespread myths, viz., (1) biased
estimates differ from the population attribute by the amount of the bias; and, (2)

unblasedness 1is always preferable to biasedness.



To begin, we may note that an individual estimate is the sum of three quantities:
the population attribute being estimated, any bias inherent in the sampling and

estimation procedure, and a deviation from expectation. That is,

-~

N

H

N+ B+d (1)

N - E(N)

H

where d

Since the expectation of a sum equals the sum of expectations, and the expecta-

tion of a constant is the constant, it follows that

H

E(ﬁ - E(ﬁ))
= E(N) - E(E(N))

E(d)

= E(N) - E(N)
= O,
and thus that

E(N) = E(N + B + d)

H

= E(N) + E(B) + E(d)

it

N+ B (2)
Hence, the definition of bias. Furthermore, expression (1) demonstrates that
bias and sampling variability simultaneously influence the value of an individual
estimate. Thus, since B is constant for all ﬁ, whereas d may be positive, negative,
or zero in any given sample, the effect of bias may be compounded, negated, or un-

affected. It is only the expected value of the estimate, in general, that differs

from the population attribute by the amount of bias.

Now ,

H

MSE(N) = E(N - N)2

E((N - E(N)) + (ECH) - N))2?

E(N - E(N))2 + 2E(N - EQN))(E(N) - N) + E(E(N) - N)2

§

V(N) + 2(0)(B) + E(B)2

V(N) + B2 (3)

it



In words, the mean square error of the estimate equals the variance of the estimate
plus the square of the bias. If bias 1s zero, the mean square error and variance are
equal. Since precision is a generalization of the term variance (i.e., refers to
variability around expectation), whereas accuracy is a generalization of the term
mean square error (variability around the population attribute), we may conclude that
accuracy is a more inclusive concept because it encompasses both precision and bias.
If bias is zero in a particular sampling situation, then accuracy and precision of
estimates are synonymous.

Finally, assume that in a given sampling situation, we have available two estima-
tors, ﬁl and ﬁg, of N, where E(ﬁl) = N, and E(ﬁQ) = N + B, To many investigators, ﬁi
would appear to be the preferred estimator because it is unbiased. The important con-
sideration often overlooked is the relative sizes of V(ﬁl) and MSB(ﬁQ). If the latter

is smaller than the former, then N is actually the preferred estimator because it is

more accurate (which implies in this situation that it is also more precise).

PROBABILITY SAMPLING AND THE PETERSEN METHOD

In order for a sampling and estimation procedure to be free from bias, three basic
requirements must be met. First, sample selection must be based on some kind of prob-
ability sampling. Second, the estimator must be unbiased. Third, data must be recorded
accurately.

The ability to meet these three requirements in any given sampling situation de-
pends considerably on the nature of the population, the attribute of interest, and
the available sampling techniques. As an example, we may consider the problem of
estimating the size of a fish population, in particular the 'open" type characteristic

of streams, using the Petersen mark-recapture method as described by Vincent (1971, 1974).



Under these conditions, by far the most critical and difficult requirement
to satisfy is that involving probability sampling, in particular those features
relating to the definition and probability of selection of the individual samples.
From previous discussion, we know that our ability to determine the composition
and probability of selection of individual samples depends on the existence of a
suitably defined sampling procedure. Normally, this procedure is such that either
(1) the sampler randomizes the order in which sample units are selected (e.g.,
by shuffling a deck of cards, spinning a basket of numbered balls, or generating a
sequence of random numbers); or (2) the population units present themselves for
selection in random order, without any interference from the sampler (e.g., red
blood cells circulating in the bloodstream, or bacteria in a water supply). Implicit
in the latter alternative is that population units behave more or less as gas molecules,
randomly distributing themselves among their physical confines independently of

each other.

In population estimation situations, these two notions are often expressed as
requirements that either (1) the fishing effort be randomly distributed with respect
to the population units; or, (2) marked and unmarked members of the population be
randomly distributed with respect to each other.

In regard to the former alternative, usually the only practical way of attempting
this with electric shocking equipment is on a geographic basis. Unfortunately, such
an approach is not really relevant because it results in cluster-type sampling, whereas
what is required is a method that is equivalent to simple random sampling. Thus, if
this procedure is used to overcome the problem of nonrandom association of marked
and unmarked fish, resulting estimates will be biased and have larger than otherwise

variance.



In regard to the latter alternative, it is well known that fish do not be-
have as gas molecules, but rather exhibit a significant amount of territoriality
and homing behavior. Furthermore, because of the nature of their habitat, it is
more realistic to consider many populations of fish as consisting of somewhat
discrete subpopulations. This is particularly true of our Montana stream popula-
tions.

Consequently, we may conclude that the conventional assumptions regarding
fisning effort and distribution of marked fish are inapplicable to the typical
population estimation investigation, at least in Montana.

There is, however, a third alternative that may be more easily met: wherever
subpopulations of fish occur, the ratioc of the marked number to the unmarked number
be the same, viz., M/(N-M), where N is the total population size, and M is the
total number of marked members. Although this is precisely the objective of random
association of marked and unmarked fish, it is possible in some circumstances to
achieve the same result without such an unrealistic constraint.

For example, in flowing waters that do not exXceed the capture depth of fish
shocking equipment, it should be physically possible, during the mark trip, to
cover the entire extent of the study section, marking and releasing at many points
throughout. If the stream is too wide or swift for one crew to cover in one pass
through the section, then the crew should make several passes (or several crews
should make simultaneous passes), until the investigator has satisfied himself
that every group of fish in the section has been sampled for marking. The result
of this procedure is to maximize the chances of obtaining uniform ratios of marked
to unmarked fish throughout the section. In effect, the investigator does not
depend on random mixing for the establishment of uniform ratios, but instead ensures

this through his own efforts.



One particularly valuable feature of this third alternative is that there is a
relatively simple way of evaluating its success in any given situation (as discussed
in the section on Tests of Hypotheses). Thus, the necessary elements are available
to help ensure the reliability of individual estimation studieé, if such 1is possible,
and consequently to provide a useful criterion for determining the applicability of

the method in different situations.

A well-known source of error in the Petersen method that is not overcome by this
approach is different catch rates of fish related to size. In general, electric
shocking equipment is more efficient in catching larger fish than smaller fish.

Thug, even under otherwise ideal conditions, if the proportion of small fish varied
from one subpopulation to another (as we would expect), the ratios of marked to un-
marked fish could not be uniform. For fish in a size range within which efficiency
of capture is relatively uniform, however, we would expect these ratios to be similar.

Another source of error that can cause problems is catch rates variable by
habitat type. For example, brush-lined, undercut banks are more difficult to fish
than open riffle areas. As a result, more effort must be expended marking fish in
the former areas than in the latter in order to achieve the same proportions of

marked fish throughout.

BIAS IN PETERSEN ESTIMATES

As noted previously, one of the three requirements for unbiased estimates (of
any kind) is an unbiased estimator. In this section, we will examine two common
sources of estimator bias in the Petersen method of population estimation.

Although it is more realistic to reject the assumption of probability sampling
in the context of most population estimation studies, unfortunately this precludes
any mathematical analysis of the method. Thus, in order to make the problem at all
tractable, mathematicians responsible for the development of Petersen estimation
theory have assumed, for the most part, that recapture sampling is equivalent to

simple random sampling without replacement. At least three different estimators
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have thus been derived, viz.,

§ = Mc/R ¥/
N = M(C+1)/(R+1) 2/
§ = (M1)(Ce1)/(Re1) - 1 Y ()

where M = number marked at time of mark run
C = number caught at time of recapture run

R

number of recaptures in C

These are similar in most respects, although only expression (4) is poten-
tially unbiased. However, this edtimator is characterized by three undesirable
features, two of which are rather unique. First, its unbiasedness is a function
of sample size. Second, over a partial range of sample sizes, both the variance
and mean square error of estimates increase with sample size. Third, the form of
the variance can only be approximated. Those features concerning the variance are
treated in more detail in the following section.

Under simple random sampling, M and C in the formulas shown are assumed to
be known constants, and R is a random variable. In any real situation, however,
all three quantities are likely to be random variables. In fact, M is variable
in two senses. First, although the number to be selected for marking may (should)
be determined in advance, the number actually selected rarely is the same as the
predetermined value. Second, and much more important, the number of marked fish
remaining in the population at the time of the recapture run normally is not the
same, for a variety of reasons, as the number marked. The problem in this latter
case 1s that our estimator becomes biased because it contains a value for M

(number originally marked) that is no longer relevant to the situation existing at

1/ The conventional Petersen formula (Ricker 1958)
2/ Modification proposed by Bailey (1951)

3/ Modification proposed by Chapman (1951)

~-11-



recapture time.

The two sources of estimator bias, then, that we will investigate in this
section are sample size and change in number of marked fish between mark time and
recapture time. Since changes in total population size between mark time and re-
capture time can also be expected in the normal course of events, this generaliza-
tion is also included in our investigation.

In the derivation of the results, all assumptions required for unbiasted esti-
mates, except those relating to the estimator, are made. In particular, these
include recapture sampling equivalent to simple random sampling without replace-
ment. The applicability of the derivations in any given situation depends heavily

on the validity of these assumptions.

We begin by introducing the following notation:
N, = population size at time of mark run

number marked at time of mark run

£

Np = population size at time of recapture run

Mp = number of M remaining at time of recapture run

C = number caught at time of recapture run (sample size)
R = number of recaptures

N = (Np*tl)(C+1)/(R+1) - 1

P(R=0)

i

probability that R equals zero, given Nps My, and C
Clearly, if we assume an open population, there is no constraint on Np, i.e.,
it may be greater than, equal to, or less than Np- On the other hand, Mr can never

be greater than Mm.
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Under the conditions listed, it can be shown that the expected value of the
estimate N is
EQN) = (Np#1) (Mptl)/ (Mptl) = 1 = (Nu-Mp-C)P(R=0)(Mp+1)/ (Mp+1) (5)
for Mp+C < Ny, and
B = (Nptl) (M +1)/ (Mp41) - 1 (6)

for Mp+C > N..

A feature of these expressions worth noting is that they explicitly show that
expectation is in terms of Ny rather than Ny. In other words, the population being
estimated at recapture time is the population extant at that time. The population
existing at mark time (Np) has no relevance to the problem, except in the special
situation described later.

If My = Mp = M, and N = N, = N, expression (5) reduces to

E(N) = N - (N-M-C)P(R=0) (7)
This is equivalent to the formula derived by Robson and Regier (1964,
page 216), viz.,
E(N) = N - (N-M)h(03;C,M+1,N)
Using expressions (5) and (6) and the definition of bias, we find that
B = (Np+l)(Mp-Mp)/ (Mp+1) = (Np-M,-C)P(R=0)(M +1)/(M.+1) (8)
for MptC < Ny, and
B = (N,+1)(My-M )/ (M,+1) (9)
for M, +C > Np.

Estimator bias, therefore, is the sum of two principal components, one

positive, the other negative. The positive component results from bias caused

by the difference between M  and M,. The negative component results from two

-13-



sources of bias: that caused by the relative difference between My and M., and that
caused by the difference between N, and Mp+C.
There are two sets of conditions under which this bias is zero:
(1) M, = Mp and Nj, < M +C, or
(2) the positive component equals the negative component.
Condition (2) is not worth further consideration because knowledge about this
event is outside the domain of information available to the investigator. On the
other hand, supplementary data or educated guesses are often available concerning

condition (1). In particular, it is often assumed that M, = M Furthermore, it

.
is almost always true that Mp+C < N,. Thus, under these assumptions, any estimator
bias in the estimate of N, results from the excess of Nr over M, +C. 1In this regard,
Robson and Regier (1964) point out that such bias is less than two percent if

MpC/Nn > 4. Fortunately, this latter condition is rather easily met, particularly

if the graphs provided by these authors for determining sample size are used.

A frequent alternative assumption concerning Mn is that M,/Mp = Np/Np. This as-
sumption implies that the proportional change in marked members of the population
between mark and recapture times is the same as the proportional change in unmarked
members. It is particularly reasonable for closed populations, but is not generally
valid for open populations such as those found in streams.

Under this assumption, if bias due to the negative component of expression (8)
is negligible, it is easily shown that estimator bias is approximately Np - Nn. This
is equivalent to confirming the well-known fact that the expectation of our estimate
is N, rather than N,. Thus, whenever it is valid to assume the same rates of change

in number of both marked and unmarked members of a population, estimation may be
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thought of in terms of the mark time population. Otherwise, estimation is in terms
of the recapture population.
It remains to note that estimator bias decreases as Mp approaches M,, and/or

MptC approaches Ny.

VARIANCE OF PETERSEN ESTIMATES

Although the exact form of the variance of Petersen estimates is not known ,
Chapman (1951) has derived an approximate formula that is applicable to 'large"
samples, viz.,

V() = N2[(N/MC) + 2(N/MC)2 + s(N/MC)3]

The implication of this expression is that variance is inversely related to
sample size (C) and number of marked members (M) in the population (N). Unfor-
tunately, this implication is not valid for all sample sizes. That is, there are
some sets of values of M and C for which variance of the estimates actually in-
creases as M and/or C increases. Since such aberrant behavior is contrary to the
logic of conventional sampling theory, it is worthwhile investigating its cause.

The simplest way to do this is to look at ranges of estimates. There are two
reasons for this. First, the range of a set of values is often closely correlated
to the variance of those values. Second, in the case of the Petersen estimator,
ranges are easily calculated.

In deriving the results, we must consider estimates in two different groups
based on the values of M and C.

1. M+C <N

C <M

In this case, the minimum value that R can take is zero, and the
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maximum value is C. Thus, the maximum value that the estimate can

take is

~

Noax = (M+1)(C+1)/(0+1) - 1

= MC+ M+ C

and the minimum value that the estimate can take is

~

1]

nin (M+1)(Cc+1)/(C+l) - 1
= M

The range of the estimates is thus

i
1
i

MC+M+C~-M

it

C(M+1)
Since this is an increasing function of M and C, we should not be
unduly surprised that variance of the estimates also increases.

If we look at the ratio of extreme estimates, we find that

~ ~

Nmax/N (MC+M+C)/M

min

C+ 1+ C/M
Since this also is an increasing function of C (but not of M),
the basis for an increasing variance is even more firmly established.

The foregoing results are symmetric in M and C. That is, if

M < C, then

max = Npip ° M(C+1)
and,

Npax/Npin = M+ 1+ MC
N <M+ C
C <M

Under these conditions the minimum value that R may take is M+C-N,

the maximum value C. Then,

~

N

max = (MHL)(C+1)/(M+C-N+1) - 1

1]

(MC+N)/(M+C-N+1)
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and,

1]

(M+1)(C+1)/(C+1) ~ 1

“min
= M
so that,
Noaw = Nmin = (MC+N)/(M4C-N+1) - M

(N-M)(M+1)/ (M+C-N+1)

i

Since this is a decreasing function of both M and C under the
conditions imposed, variance of the estimates must also decrease.
Again, this result is symmetric in M and C, so that, if M<(C,

-~

finax - fmin = (N-C)(C+1)/(M+C-N+1)

mi
In summary then, for M + C < N, the range and ratio of extreme values of Petersen
estimates increases with increasing M and/or C, whereas for N < M + C, the opposite is
true. This is why we find that variance of the estimates shows similar behavior.
It is important to note, however, that the correspondence is far from exact. This
is because the variance depends not only on the deviations of estimates from expec-
tation, but alsoc on their probabilities of occurrence. As it turns out, larger
deviations caused by more extreme values tend to be offset by much smaller prob-
abilities.
Unfortunately, it is not mathematically possible to show combinations of M and
C, as a function of N, such that any values larger than these would result in re-
duced variance of estimates. However, a very satisfactory alternative is to make
use of the aforementioned graphs published by Robson and Regier (1964). These

provide combinations of M and C, for any N (guessed in advance), such that if the

guessed value of N is reasonably accurate, the resulting estimate will have limits
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that contain the true population value with predetermined confidence. Anyone
using these graphs may be confident that the values of M and C shown for any
given N are in a region where variance of estimates decreases with increasing

M and/or C.

TESTS OF HYPOTHESES

In our applications of the Petersen method in Montana, there are two sources
of error with which we are particularly concerned: (1) nonuniform ratios of marked
to unmarked fish throughout the distribution of the population; and, (2) loss of
marksd fish from the population. There are two ways of trying to cope with these
problems. First, we can take steps to minimize them. Second, we can try to mea-
sure the extent of their occurrence.

In regard to ratios of marked to unmarked fish, it has already been recommended
that, where feasible, the best way to minimize nonuniformity is to blanket the
entire study section on the mark run, concentrating especially on those portions
of the habitat where shocking efficiency is low. The objective is to mark as many
fish as possible, and release them as close to their original territory as possible.

Marked fish may be lost as a result of death and/or movement out of the study
section. Loss due to death is esséntially eliminated by conducting studies at times
of the year when water temperatures are below 65 °, and by properly capturing and

handling the fish. Loss due to movement can be minimized by blocking off the study
section, although this is usually impractical for the time span of studies as con-
ducted in Montana.

leasurement of Uniformity of Ratios

The degree of uniformity of ratios of marked to unmarked fish may be measured

by sampling at several sites within the study section during the recapture run. If

-18-



the ratios are relatively uniform, and other requirements of the method are satis-
fied, the implication is that the estimate is a reasonable one.

A statistical test that may be used in this situation is XZ. If the study
section has been divided into n subsections, and recapture samples have been
selected in each, then an n x 2 contingency table may be constructed (Table 1).
Table 1. OBSERVED AND EXPECTED VALUES OF MARKED AND UNMARKED FISH SELECTED IN

n RECAPTURE SAMPLES TO TEST THE HYPOTHESIS OF UNIFORM RATIOS OF MARKED
TO UNMARKED FISH

SUBSECTION
1l 2 e n Total
Marked OBSERVED R 1 R R R
o 02 n
EXPLCTED Ra1 R, on
Unmarked OBSERVED U°1 U02 UOn U
EXPECTED Uet Uas en
Total Cq ) Ch c

Expected values are calculated as

R

ei RCi/C
and
Uei = Ci - Rei

The test is calculated as
n n
X34 = B2 (Roy-Rei)?/Rei + I (Ugj~Ue)?/Uei
i=1 i=1
If X&,n~1a is tabled xz at the a probability level with n-1 degrees of freedom,
and X2 1 < xg_l, then with 100(1-o) percent confidence we reject the hypothesis

of uniform ratios of marked to unmarked fish.
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In applying this test, the investigator should keep in mind that it is only
valid in the situation, during the mark run, where all the fish are uniformly
catchable, or alternatively, where fishing effort is inversely proportiocnal to
catchability.

It is recommended that n be chosen so that it is no larger than ﬁ@/(loﬁ),
where N, H, and 8 are advance estimates of N, M, and C respectively. If good
estimates of these quantities are made, then the average value of Roi will be
approximately 10 or larger, thus ensuring a valid test of the hypothesis.

In regard to defining the location of the subsections, this is best done on
the basis of habitat type or some other relevant consideration, rather than merely

dividing the stream along the direction of flow. Such a procedure will provide

a more meaningful test of the hypothesis.

Measurement of Random Mixing

In those situations where it is desired to learn the actual extent of random
mixing of marked and unmarked fish, a slightly different test may be applied. As
in the foregoing, the study section is divided into n subsections, but in this
case fish are marked uniquely in each. During the recapture run, marked fish are

recorded according to both subsection of marking and subsection of recapture. An

(n+l) x n contingency table may then be constructed (Table 2).
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Table 2.

OBSERVED AND EXPECTED VALUES OF MARKED AND UNMARKED FISH IN n RECAPTURE

SAMPLES TO TEST THE HYPOTHESIS OF RANDOM MIXING OF MARKED AND UNMARKED

FISH
Recaptured in  Recaptured in Recaptured in  Total
Subsection 1 Subsection 2 Subsection n
Yarked in OBS R R R R
11 ol 1
Subsection 1 EXP RO R012 n
ell el? eln
faikeit%g , gii §o2l §o22 Ro2n R,
wubsection el2l e?2?2 e2n
Marked in OBS R ni R 9 R R
Subsection n EXP rR® 1 rON RODD n
en en2 enn
Unmarked 0OBS U U U U
n
EXP gol 02 u®
el e? en
Total Cq C, “n ¢

Expected values are calculated as

Reij = RiCj /C

and
n_
Ugj = ch%:I Roi
The test is calculated as

n n
2 Sy
tane1) g 27 ot

n
_ 2
Reij) /Reij+ 3

.
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If Xg,n(n—l) is tabled x? at the a probability level with n(n-1) degrees of
freedom, and Xé,n(n—l) < xﬁ(n-l)’ then with 100(1-a) percent confidence we reject
the hypothesis of random mixing of marked and unmarked fish.

Here again, this test should be applied only to those fish that, during the
mark run, are uniformly catchable or against which the fishing pressure is inversely
proportional to catchability. Also, in this case, n should be chosen so that it is
no larger than %8/(1003), thus ensuring that, on the average, Roij will be 10 or

larger.

Measurement of Loss of Marked Fish

The extent to which marked fish leave the study section can be monitored by
establishing n subsections of equal length, linearly arranged from the upstream
end (subsection 1) to the downstream end (subsection n) of the section. If fish
are marked uniquely in each, then during the recapture run marked fish may be re-
corded according to subsection of marking and subsection of recapture. The ohjec-
tive is to estimate the total number of marked fish that leave the section by
migrating upstream, and the total number that leave by migrating downstream (assuming
that, in general, these migration rates differ).

Now the total number of fish that migrate upstream out of the section can be
divided into n groups, representing the n subsections where the fish were marked.
Bach of these groups can be further divided into subgroups representing the dif-
ferent distances migrated. Assuming that distance of movement is independent of
originating subsection, and that catchability of fish is the same in all subsections,
the estimated number of fish that leave the section by migrating upstream from

subsection j a distance represented by the distance between subsections n-i+l and 1 is

M. P,. M, is the number of fish marked in subsection j (j < n-i), and Pi is the estimated
J ] -
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proportion of fish that leave the section by migrating upstream a distance repre-
sented by the distance between subsections n-i+l and 1, where i is the number of

pairs of subsections n-1 subsections apart. That is,

1
P. = (1/1) Ek . Rn_i+k,k/Rn~i+k,n—i+k (10)

where qu = number of fish marked in subsection p and

recaptured in subsection q.

Thus, the estimated number of fish that leave the section by migrating upstream

is
- n-1 n-i
M =§ > M.P. (11)
YoTer FEr 0

This estimator is negatively biased by an amount representing the number of marked
fish that migrated upstream a distance equal to or greater than the length of the
entire section. However, by making the section long enough, this bias can be made as
small as desired. Also, the more subsections that are used, the more accurate should
be the estimate.

By logic similar to the above, we find that the estimated number of marked fish that

leave the section by migrating downstream is

My =_>_‘ E _ Mj P (12)
i=1 j=i#l
where, in this case,
i
Py = (1/1)2;;; Ry n-i+k /R x (13)

H

estimated proportion of fish that leave the section by
migrating downstream a distance represented by the

distance between subsections 1 and n-i+1.
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The estimated total loss of marked fish from the study section is then

My = M, + Md

and an estimate of the number of marked fish remaining at recapture time is
Moo= M - M
I‘Mm 1

Thus, a lower bound to the relative blas of our population estimate, due

to loss of marked fish, may be approximated as

~

B

it

rel = (n-Mp)/Hp

ﬁl/(Mm“ﬁl) (%)

EXAMPLES

The objective in this section is to illustrate the important results discus-
sed previously. In particular, we shall see that (1) even though bias is present
in a sampling and estimation scheme, individual estimates do not necesssarily re-
flect this bias; (2) bias in Petersen estimates is at least partially a function
of sample size; and, (3) variance of Petersen estimates increases with sample size
over a significant range of values of M ahd C.

In evaluating the implications of these examples, the reader should bear in
mind that the purpose here is to illustrate qualitative characteristics of bias
and variance that are independent of population size. Quantitative character-
istics that are a function of the unrealistically small population that is used
as a basis for the examples cannot be reliably extrapolated to larger populations.

Also illustrated are a xz test of uniformity of ratios, and estimation of

loss of marked fish due to migration.
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EXAMPLE 1

Conditions: N = 8
M= 2
C =2

Total number of samples = 28
Estimator is N = (M+1)(C+1)/(R+1) - 1

Expectation formula (7) is applicable.

Number of Number of Probability of Estimate

Reﬁiﬁtures Samples Occurrence (ﬁ)
0 15 15/28 (3)(3)/(1) - 1=
1 12 12/28 (3)(38)/(2) -1 =
2 1 1/28 (3)(3)/(3) -1 =

By the definition of expectation (which is valid for any estimator),

i

E(N) = (8)(15/28) + (3%)(12/28) + (2)(1/28)

164/28 = 5.9

By formula (7), which is valid for the Petersen estimator,

i

E(N) = 8 - (8-2-2)(15/28)

164/28

By the definition of bias,

B

i64/28 - 8

i

-60/28 = -2.1

The sole source of this bias is sample size.
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The interesting feature of this example is that, even with a negative bias of

approximately 25 percent, over 50 percent of the estimates are identical to the at-

tribute being estimated.

We know from previous discussion involving expression (1)

that the reason for this is that the bias is exactly balanced by sampling variability

(Table 3).
Table 3. RECONSTRUCTION OF INDIVIDUAL COMPONENTS OF ESTIMATES
LSTIMATE = ATTRIBUTE + BIAS + DEVIATION FROM EXPECTATION
(N) (N) (B) (d)
8 8 -60/28 60/28
I 8 -60/28 -66/28
2 8 -60/28 -108/28
EXAMPLE II
Conditions: N 8
M 3
C 3
Total number of samples = 56
Estimator is N = (M+1)(C+1)/(R+1l) - 1
Expectation formula (7) is applicable.
Number of Number of Probability of Estimate
Recaptures Samples Occurrence (ﬁ)
(R)
0 10 10/56 15
1 30 30/56 7
2 15 15/56 4 1/3
3 1 1/56 3
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E(N)

3]

(15)(10/56) + (7)(30/56) + (4 1/3)(15/56) + (3)(1/56)

it

428/56

1"

8 - (8-3-3)(10/56)

e
tt

428/56 - 8

H

-20/56

The sole source of this bias is sample size.

This example demonstrates further the relative effects of sampling variability
and bias. Thus, even though there is a negative bias of approximately 5 percent,

sampling variability in 10 of the 56 samples resulted in overestimation of the

attribute by nearly 100 percent.

EXAMPLE ITI

Conditions: N =28
M=y
C =y

Total number of samples = 70
Estimator is N = (M+1)(C+1)/(R+1) - 1

Expectation formula (7) is applicable.

Number of Numper of Probability of Estimate
Recaptures Samples Occurrence (ﬁ)
(R)
0 1 1/70 24
1 16 16/70 11 1/2
2 36 36/70 7 1/3
3 186 16/70 5 1/4
4 1 1/70 4
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E()

i

(24)(1/70) + (11 1/2)(16/70) + (7 1/3)(36/70) + (5 1/4)(16/70) + (4)(1/70)

=8

t

8 - (8-4-4)(1/70)
B=28 -8
= 0

This example verifies that sample size bias in the Petersen estimation method
becones zero when N < M+C, even though P(R=0) > 0. Furthermore, it shows that even
though the bias is zero, no individual estimate is equal to the population attribute.

These first three examples illustrate two general features of Petersen estimates
discussed previously, both of which relate to increases in M and C in the range

M+C < N. Tirst, sample size bias decreases. Second, the spread between maximum and

minimum estimates increases. As noted earlier, this is responsible for an increase

in variance of the estimates.

EXAMPLE IV
Conditions: N, = 8
My = 4
Np = 7
Mp = 3
Cc =4

Total number of samples = 35
Estimator is N = (Mp+1)(C+1)/(R+1) - 1

Expectation formula (6) is applicable.
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Humber of Number of Probability of Estimate

Recaptures Samples Occurrence (ﬁ)
(R)
0 1 1/35 24
1 12 12/35 11 1/2
2 18 18/35 7 1/3
3 I 4/35 5 1/4
E(ﬁ) = (24)(1/35) + (11 1/2)(12/35) + (7 1/3)(18/35) + (5 1/u4)(4/35)
= 315/35
= 9

t

(7+1)(4+1)/(3+1) - 1
B=9 -7
= 2
This example demonstrates the bias that results from a biased estimator because

of a change in number of marked fish occurring between times of mark and recapture.

EXAMPLE V
Conditions: N = 8
M=oy
C =4

Total number of samples = 70

Estimator is N = (M+l)(C+l)/(R+l)1/

1/ This is formula 3.9 of Ricker (1958).
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Number of Number of Probability of Estimate

Rec?ggures Samples Occurrence 0
0 1 1/70 25
1 16 16/70 12 1/2
2 36 36/70 8 1/3
3 16 16/70 6 1/u4
Y 1 1/70 5
E(N) = (25)(1/70) + (12 1/2)(16/70) + (8 1/3)(36/70) + (6 1/4)(16/70) + (5)(1/70)
= 630/70
=9
B=9 -8
=1

This example demonstrates another kind of estimator bias, one that results
simply from the form of the estimator, rather than from inadequate sample size or
loss of marked fish. In this case, the bias is always 1 regardless of population
size.

EXAMPLE VI

The purpose of this example is to demonstrate the bias in population estimation
that results when geographic sampling is used in an attempt to overcome the problem
of nonuniform association of marked and unmarked fish.

In this case, we assume a population of size N = 8, with M = 4 marked members,
C = 4 pecapture sample size, and estimator N = (M+1)(C+#1)/(R+1) - 1. Since the
investigator suspects that the marked and unmarked fish are not randomly associated

with each other, he attempts to overcome this problem by dividing the geographic range
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of the population into two subsections, one of which is to be randomly selected
for sampling. This division results in ratios of marked to unmarked fish in the
two subsections of 1:3 and 3:1, respectively.

Under these conditions, two possible samples may be selected, one in each
subsection, and both of which contain four fish. In subsection 1, one fish is
marked and in subsection 2, three fish are marked. The total population estimates
that result from these samples are:

N

H]

(5)(5)/(2) - 1

11 1/2 (based on the sample from subsection 1);

and,

i
[H

= (5)(5)/(u) -1 5 1/4 (based on the sample from subsection 2).
Since each of the two samples is equally likely, the expectation of the estimate
is:

B(N) = (11 1/2)(1/2) + (5 1/4)(1/2)

it

i

8 3/8

with bias of

v}
1

8 3/8 - 8

t

3/8

EXAMPLE VIT

In this example we examine the effect of changes in M and C on variance and
mean square error of the resulting estimates (Table 4). Estimates were calculated
using Chapman's estimator, i.e., N = (M+1)(C+1)/(R+1) - 1. Since both the variance and
mean square error are symmetric in M and C, those entries below the main diagonal

have been omitted.
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Table 4. VARIANCE AND MEAN SQUARE ERROR OF ESTIMATES FOR VARIOUS COMBINATIONS OF
M AND C WHEN N = 8

c

M 1 2 3 y 5 6 7
o.uut  1.89 3.75 6.25 8.4k 9.19 7.00

1 28.002/  15.75 10.00 8.50 3.00 9.25

2 5.37 9.57 12.24 11.88 8.25 3.00

9.96 10.71 12.43 11.89
3 13.21 12.54 8.57 .17 1.67
13.33 12.55

4 8.64 4.61 2.42 1.00

5 2.63 1.43 0.60

6 0.78 0.33

7 0.14

;/ Variance

2/ Mean square error (MSE); for those combinations of M and C for which
MSE = variance (bias is zero), MSE is not shown.

This table illustrates how variance increases for most values of M and C in

the range M + C < N, but decreases for N < M + C, as implied by the results derived

previously in terms of ranges of estimates. Mean square error is somewhat erratic.

EXAMPLE VIII

This example presents more data showing the relationship between mean square
error of Petersen estimates and various combinations of M, C, and N (Table 5), where
N = (M#1)(C+1)/(R+#1) - 1. The value of this example lies in the fact that the

population and sample sizes cover a range of values commonly encountered in real life
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situations. The data imply that, for combinations of M and C below a limit somewhere

below that of MC/N = 5, mean square error (hence, variance) increases with increasing

M and C.

Table 5. MEAN SQUARE ERROR OF PETERSEN ESTIMATES FOR VARIOUS VALUES OF N, M, AND Cl/

N M C MC/N MSE
10,000 100 1,000 10 .1102N
100 5,000 50 .0107N
500 5,000 250 .0021N
100,000 100 1,000 1 .2165N
100 5,000 5 . 2996N
500 5,000 25 .OLOTN
1,000 10,000 100 .0091N
1,000,000 100 10,000 1 .2152N
500 5,000 2.5 .310LN
1,000 10,000 10 .1132N
1,000 20,000 20 . 0544N

1/ Adapted from Table 3 of Chapman (1951).

EXAMPLE IX

The purpose of this example is to illustrate the x2 test of the hypothesis of
uniform ratios of marked to unmarked fish. For this test, we assume that the study
section has been divided into 6 subsections at recapture time, with the recaptures

as recorded in Table 6.
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Table 6. OBSERVED AND EXPECTED VALUES OF MARKED AND UNMARKED FISH SELECTED IN
SIX RECAPTURE SAMPLES TO TEST THE HYPOTHESIS OF UNIFORM RATIOS OF
MARKED TO UNMARKED FISH

SUBSECTIONS
1 2 3 L 5 6 Total
MARKED OBSERVED 25 55 50 30 50 100 310

EXPLCTED 35.43 53.14 Ly, 29 17.71 70.86 88.57

UNMARKED OBSERVED 175 245 200 70 350 4oo 1440
EXPECTED  164.57 246,86 205.71 82.29 329.14 B11.u43

TOTAL 200 300 250 100 400 500 1750

[xpected values are calculated according to the formulas shown in the section
describing this test. For example,

Rel

i

RCi/C = (310)(200)/1750 = 35.u3

Uel = C1 - Rel = 200 - 35.43 = 164,57

XZ with 5 degrees of freedom is calculated as

1]

e (25-35.43)2/(35.43) + (55-53.14)2/(53.14) + (50-44,.29)2/(4k.29) +
(30-17.71)2/(17.71) + (50-70.86)2/(70.86) + (100-88.57)2/(88.57) +
(175-164.57)2/(164.57) + (245-246.86)2/(246.86) + (200-205.71)%/(205.71) +
(70-82.29)2/(82.29) + (350-329.14)2/(329.14) + (400-411.43)2/(411.43)

24,32

il

Since X?OOS,S = 16.7, we reject the hypothesis with 99.5 percent confidence.

EXAMPLE X
The purpose of this example is to illustrate how to calculate the estimated loss,

due to migration, of marked fish from the study section, and consequently, provide a
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jower bound to this particular source of bias in the population estimate. In this
case, we assume that our stream section is divided into four equal subsections
(numbered 1 to 4 from upstream end to downstream end). Also, we assume numbers

marked and recaptured by subsection, as shown below.

Rpq
Marking Recapture Subsections
Subsections _Mj 1 2 3 4
1 150 56 10 0 2
2 400 4 150 12 2
3 100 2 4 30 5
4 200 1 5 3 80
M, = 850

Loss due to upstream migration is estimated as follows. By expression (10),

1 Ru,l/Ru,u = 1/80 = .0250

P, = (1/2)(Ry 4/ + Ry /Ry ) = (1/2)(2/30 + 5/80) = .0646

R
3,3

P, = (1/3)(R /R3’3 + Ry, 3/R )

2,1/R2,2 " Ra 2 4,4

= (1/3)(4/150 + 4/30 + 3/80) = .0658
By expression (11),

LI My + My + M3)P1 + (M1 + M2)P2 + M4Pg
= (150 + 400 + 100)(.0250) + (150 + 400)(.0646) + (150)(.0658)

= 61.65
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Loss due to downstream migration is estimated as follows. By expression (13),

/ = 2/56 = .0357

1 Ri,u R1,1

o
il

5 (1/2)(R1,3/R1’1 + R2,4/R2 2) = (1/2)(0/56 + 2/150) = .0067

L]

o
3]

/R, )

1/3)(R R + R R + R
5 = X/ )( / 1,1 2,3/ 2,2 3,47 3,3

1,2

(1/3)(10/56 + 12/150 + 5/30) = .1u4l7

By expression (12),

~

My

H

(My + M3 + M )Py + (Mg + My)P, + M Py

¢

(400 + 100 + 200)(.0357) + (100 + 200)(.0067) + (200)(.1u417)

55.34

Thus, the total loss is estimated as

Ml = Mu + Md

61.65 + 55.34
= 117
and the bias in our population estimate due to this loss is estimated as

at least

|
=
~
~
=
1
=
e

Bre1 ® 1"V 'm 1

117/(850 - 117)

"

.1596, or about 16 percent.
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CONCLUSIONS

on the basis of experience and the analyses contained in this paper, we feel

that the following conclusions and recommendations are justified:

1. Chapman's estimator of population size, used in conjunction with the
Petersen mark-recapture method, is the best one available. However, it
exhibits two unusual properties that investigators should be aware of:

a. It is potentially unbiased only for certain sample sizes of
M and C;
b. Variance of the estimates is not a decreasing function of
sample size over the entire range of values of sample size.
Sample sizes recommended by Robson and Regier for various population sizes
essentially eliminate any undesirable consequences of these two properties.

9. There are several sources of bias in the Petersen method. Those attrib-

utable to lack of probability sampling are:
a. Nonrandom selection by the fishing method of marked and un-
marked fish; or,
b. Nonrandom association of marked and unmarked fish.
1f the investigator himself can establish reasonably uniform ratios of marked
to unmarked fish throughout the population, then the need to depend on
probability sampling is eliminated.
Those biases attributable to the estimator itself are:
a. Use of any estimator other than Chapman's;
b. Sample size, i.e., when M + C < N; bias due to this source is
negligible when MC/N > U;

c. Loss of marked fish between mark time and recapture time.
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Biases attributable to inaccurate recording of data are not discussed
in this paper. For information about these, the section on the Petersen
method by Ricker (1958) may be consulted.
The Petersen mark-recapture method is a reliable tool for estimating the
size of fish populations under the following conditions:
a. The graphs provided by Robson and Regier are used to

estimate required sample sizes;
b. Reasonably uniform ratios of marked to unmarked fish

are established throughout the distribution of the

population;
c. Loss of marked fish between mark time and recapture

time is negligible (or is balanced by a proportionate

loss of unmarked fish).
It is recommended that tests of conditions b and c be made as regular
a feature of mark-recapture studies as practicable, because failure of
these conditions is the most serious source of error in the method.
The benefits gained from this practice are twofold. First, it helps
determine the reliability of any individual recapture sample. Second,
it provides a technique for refining the mark and recapture sampling

process in general.
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